ar X iv : m at h - ph / 0 10 60 14 v 1 1 8 Ju n 20 01 Plancherel Inversion as Unified Approach to Wavelet Transforms and Wigner Functions

نویسنده

  • Anna E. Krasowska
چکیده

We demonstrate that the Plancherel transform for Type-I groups provides one with a natural, unified perspective for the generalized continuous wavelet transform, on the one hand, and for a class of Wigner functions, on the other. The wavelet transform of a signal is an L2-function on an appropriately chosen group while the Wigner function is defined on a coadjoint orbit of the group and serves as an alternative characterization of the signal, which is often used in practical applications. The Plancherel transform maps L2-functions on a group unitarily to fields of Hilbert-Schmidt operators, indexed by unitary irreducible representations of the group. The wavelet transform can essentially be looked upon as a restricted inverse Plancherel transform, while Wigner functions are modified Fourier transforms of inverse Plancherel transforms, usually restricted to a subset of the unitary dual of the group. Some known results on both Wigner functions and wavelet transforms, appearing in the literature from very different perspectives, are naturally unified within our approach. Explicit computations on a number of groups illustrate the theory. e-mail: [email protected] e-mail: [email protected] e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 40 60 24 v 1 1 3 Ju n 20 04 p - Adic wavelet transform and quantum physics ∗

p-Adic wavelet transform is considered as a possible tool for the description of hierarchic quantum systems.

متن کامل

ar X iv : m at h / 06 03 03 6 v 2 [ m at h . Q A ] 8 M ay 2 00 6 WAVELET TRANSFORMS ASSOCIATED WITH THE BASIC BESSEL OPERATOR

This paper aims to study the q-wavelet and the q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. As an application, an inversion formulas of the q-Riemann-Liouville and q-Weyl transforms using qwavelets are given. For this purpose, we shall attempt to extend the classical theory by giving their q-analogues.

متن کامل

ar X iv : m at h / 05 01 14 5 v 1 [ m at h . D S ] 1 0 Ja n 20 05 WAVELET CONSTRUCTIONS IN NON - LINEAR DYNAMICS

We construct certain Hilbert spaces associated with a class of non-linear dynamical systems X. These are systems which arise from a generalized self-similarity, and an iterated substitution. We show that when a weight function W on X is given, then we may construct associated Hilbert spaces H(W) of L 2-martingales which have wavelet bases.

متن کامل

ar X iv : m at h / 06 07 43 7 v 1 [ m at h . FA ] 1 8 Ju l 2 00 6 Operator identities relating sonar and Radon transforms in Euclidean space

We establish new relations which connect Euclidean sonar transforms (integrals taken over spheres with centers in a hyperplane) with classical Radon transforms. The relations, stated as operator identities, allow us to reduce the inversion of sonar transforms to classical Radon inversion.

متن کامل

ar X iv : m at h - ph / 0 20 60 17 v 1 1 2 Ju n 20 02 Z 3 - graded Grassmann Variables , Parafermions and their Coherent States

A relation between the Z3-graded Grassmann variables and parafermions is established. Coherent states are constructed as a direct consequence of such a relationship. We also give the analog of the Bargmann-Fock representation in terms of these Grassmann variables.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008